Понятие ценностей
Человек живет среди других людей, среди вещей, идей, смыслов. Разные люди, вещи, идеи по-разному значимы для человека, имеют для него различную цену. Мир человека - это мир ценностей.
Уточнение вида зависимости
f (x
, y
)=exp [a+b1 ln(y1/x1)+b2 ln(y2/x2)+b3(ln(y3/x3)]=
=A,
где A=ea. Очевидно, что в этом примере изменения интенсивностей переходов lij и предпочтений при изменении какого-либо одного фактора xl или yl (l=1,2,3) зависит от значений всех остальных факторов, хотя соотношение (2.1) выполнено, а, следовательно, справедливость гипотезы 2 не нарушена.
Во всех примерах гипотеза 1 выполнена, так как все коэффициенты a, A, и bi не зависят от группы, к которой отнесен человек, обладающий набором благ x
. Более того, обратим внимание на то, что в примерах нигде не учитывалось различие в коэффициентах пропорциональности f и y приращений факторов-благ. Таким образом, набор функций от факторов, удовлетворяющих условиям гипотез 1 и 2 весьма широк.
Задачи.
1. Пусть I(y1, y2) – индикатор возрастного интервала (y1, y2), где начало и конец – возраст человека (полное число лет), т. е. функция от возраста z, равная 1 при y1,<z<y2. и 0 в остальных случаях. Пусть C означает, что «нужен поп», B – «нужна попадья, A – «нужна попова дочка». Функция F(z)=A·I (18,30)+B·I (0,7)+C·I (60,100). Ответьте на вопросы из поговорки: «кому нужен поп? кому попадья? кому попова дочка?», выраженные последним соотношением.
2. Проверьте, что эффективности действия факторов на функцию привлекательности из примера 2 зависит от всех других параметров
3. Пусть z
=(y
-x
) и векторы-столбцы y
и x
разделены на два подвектора y
1, y
2 и x
1, x
2 так, что вектор z
существует и равен [(y
1-x
1)T, (y
2-x
2)T]T=(z
1, z
2). Если матрицы A
1 и A
2 таковы, что z
TAz
существует и A
=, а функция предпочтения f (x
, y
)³0, т. е. матрицы A
1 и A
2 неотрицательно определены. Убедитесь, что а) матрица вторых производных по y
отличается от A
на
положительный множитель, а по x
– на отрицательный; б) функция предпочтения удовлетворяет всем условиям как первой группы, т. е. по y
функция возрастает, а по x
– убывает, так и второй – функция предпочтения по yвыпукла вверх, а по x
– вниз.
Справки и ссылки
Следует отметить, что факторы у существующих для практических применений моделей движения населения всегда удовлетворяют условиям гипотез 1 и 2, а некоторые из них вдобавок независимы по эффективности. Так, вид функции из примера 4 а) встречался в работе [Бородкин и Соболева], а первые два слагаемых из примера 4 б) использовались, правда несколько в другой ситуации, в работе [Rogers]. Вид этих зависимостей, называемый часто экономистами моделями, указывает на то, что предполагается, согласны все с этим или нет, выполнение условий гипотез 1, 2 и все удовлетворяющие примеру 1 факторы независимы по эффективности. Последнее утверждение обосновано непосредственно следствием 2 и теми функциями регрессии, которые использовались в упомянутых работах.
Более сложная модель зависимости подвижности людей от благ-факторов на старом и новом местах – функция из примера 5 для большего числа факторов – применялась работе [Матлин]. Для нее выполнены условия гипотез 1 и 2, что вытекает из теоремы 1, но эффективности всех факторов зависят от уровня остальных.